A nonlocal connection between certain linear and nonlinear ordinary differential equations/oscillators
نویسندگان
چکیده
We explore a nonlocal connection between certain linear and nonlinear ordinary differential equations (ODEs), representing physically important oscillator systems, and identify a class of integrable nonlinear ODEs of any order. We also devise a method to derive explicit general solutions of the nonlinear ODEs. Interestingly, many well known integrable models can be accommodated into our scheme and our procedure thereby provides further understanding of these models.
منابع مشابه
Nonlocal Bending Analysis of Bilayer Annular/Circular Nano Plates Based on First Order Shear Deformation Theory
In this paper, nonlinear bending analysis of bilayer orthotropic annular/circular graphene sheets is studied based on the nonlocal elasticity theory. The equilibrium equations are derived in terms of generalized displacements and rotations considering the first-order Shear deformation theory (FSDT). The nonlinear governing equations are solved using the differential quadrature method (DQM) whic...
متن کاملNonlocal symmetries of a class of scalar and coupled nonlinear ordinary differential equations of any order
In this paper we devise a systematic procedure to obtain nonlocal symmetries of a class of scalar nonlinear ordinary differential equations (ODEs) of arbitrary order related to linear ODEs through nonlocal relations. The procedure makes use of the Lie point symmetries of the linear ODEs and the nonlocal connection to deduce the nonlocal symmetries of the corresponding nonlinear ODEs. Using thes...
متن کاملNonlinear Vibration Analysis of the Fluid-Filled Single Walled Carbon Nanotube with the Shell Model Based on the Nonlocal Elacticity Theory
Nonlinear vibration of a fluid-filled single walled carbon nanotube (SWCNT) with simply supported ends is investigated in this paper based on Von-Karman’s geometric nonlinearity and the simplified Donnell’s shell theory. The effects of the small scales are considered by using the nonlocal theory and the Galerkin's procedure is used to discretize partial differential equations of the governing i...
متن کاملNonlinear Bending Analysis of Sector Graphene Sheet Embedded in Elastic Matrix Based on Nonlocal Continuum Mechanics
The nonlinear bending behavior of sector graphene sheets is studied subjected to uniform transverse loads resting on a Winkler-Pasternak elastic foundation using the nonlocal elasticity theory. Considering the nonlocal differential constitutive relations of Eringen theory based on first order shear deformation theory and using the von-Karman strain field, the equilibrium partial differential eq...
متن کاملNumerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کامل